3.5.59 \(\int \sqrt {a-a \sin ^2(e+f x)} \tan (e+f x) \, dx\) [459]

Optimal. Leaf size=19 \[ -\frac {\sqrt {a \cos ^2(e+f x)}}{f} \]

[Out]

-(a*cos(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {3255, 3284, 16, 32} \begin {gather*} -\frac {\sqrt {a \cos ^2(e+f x)}}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a - a*Sin[e + f*x]^2]*Tan[e + f*x],x]

[Out]

-(Sqrt[a*Cos[e + f*x]^2]/f)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rule 3255

Int[(u_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Int[ActivateTrig[u*(a*cos[e + f*x]^2)^p]
, x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0]

Rule 3284

Int[((b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = FreeFact
ors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[x^((m - 1)/2)*((b*ff^(n/2)*x^(n/2))^p/(1 - ff*x)
^((m + 1)/2)), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2
]

Rubi steps

\begin {align*} \int \sqrt {a-a \sin ^2(e+f x)} \tan (e+f x) \, dx &=\int \sqrt {a \cos ^2(e+f x)} \tan (e+f x) \, dx\\ &=-\frac {\text {Subst}\left (\int \frac {\sqrt {a x}}{x} \, dx,x,\cos ^2(e+f x)\right )}{2 f}\\ &=-\frac {a \text {Subst}\left (\int \frac {1}{\sqrt {a x}} \, dx,x,\cos ^2(e+f x)\right )}{2 f}\\ &=-\frac {\sqrt {a \cos ^2(e+f x)}}{f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 19, normalized size = 1.00 \begin {gather*} -\frac {\sqrt {a \cos ^2(e+f x)}}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a - a*Sin[e + f*x]^2]*Tan[e + f*x],x]

[Out]

-(Sqrt[a*Cos[e + f*x]^2]/f)

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 21, normalized size = 1.11

method result size
derivativedivides \(-\frac {\sqrt {a -a \left (\sin ^{2}\left (f x +e \right )\right )}}{f}\) \(21\)
default \(-\frac {\sqrt {a -a \left (\sin ^{2}\left (f x +e \right )\right )}}{f}\) \(21\)
risch \(-\frac {\sqrt {\left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )^{2} a \,{\mathrm e}^{-2 i \left (f x +e \right )}}\, {\mathrm e}^{2 i \left (f x +e \right )}}{2 f \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )}-\frac {\sqrt {\left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )^{2} a \,{\mathrm e}^{-2 i \left (f x +e \right )}}}{2 f \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )}\) \(99\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a-a*sin(f*x+e)^2)^(1/2)*tan(f*x+e),x,method=_RETURNVERBOSE)

[Out]

-(a-a*sin(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [A]
time = 0.54, size = 21, normalized size = 1.11 \begin {gather*} -\frac {\sqrt {-a \sin \left (f x + e\right )^{2} + a}}{f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sin(f*x+e)^2)^(1/2)*tan(f*x+e),x, algorithm="maxima")

[Out]

-sqrt(-a*sin(f*x + e)^2 + a)/f

________________________________________________________________________________________

Fricas [A]
time = 0.37, size = 17, normalized size = 0.89 \begin {gather*} -\frac {\sqrt {a \cos \left (f x + e\right )^{2}}}{f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sin(f*x+e)^2)^(1/2)*tan(f*x+e),x, algorithm="fricas")

[Out]

-sqrt(a*cos(f*x + e)^2)/f

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {- a \left (\sin {\left (e + f x \right )} - 1\right ) \left (\sin {\left (e + f x \right )} + 1\right )} \tan {\left (e + f x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sin(f*x+e)**2)**(1/2)*tan(f*x+e),x)

[Out]

Integral(sqrt(-a*(sin(e + f*x) - 1)*(sin(e + f*x) + 1))*tan(e + f*x), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 39 vs. \(2 (18) = 36\).
time = 0.49, size = 39, normalized size = 2.05 \begin {gather*} \frac {2 \, \sqrt {a} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 1\right )}{{\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 1\right )} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sin(f*x+e)^2)^(1/2)*tan(f*x+e),x, algorithm="giac")

[Out]

2*sqrt(a)*sgn(tan(1/2*f*x + 1/2*e)^4 - 1)/((tan(1/2*f*x + 1/2*e)^2 + 1)*f)

________________________________________________________________________________________

Mupad [B]
time = 15.25, size = 20, normalized size = 1.05 \begin {gather*} -\frac {\sqrt {a-a\,{\sin \left (e+f\,x\right )}^2}}{f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)*(a - a*sin(e + f*x)^2)^(1/2),x)

[Out]

-(a - a*sin(e + f*x)^2)^(1/2)/f

________________________________________________________________________________________